Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Immunol Cell Biol ; 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2229596

ABSTRACT

Researchers are spending an increasing fraction of their time on applying for funding; however, the current funding system has considerable deficiencies in reliably evaluating the merit of research proposals, despite extensive efforts on the sides of applicants, grant reviewers and decision committees. For some funding schemes, the systemic costs of the application process as a whole can even outweigh the granted resources-a phenomenon that could be considered as predatory funding. We present five recommendations to remedy this unsatisfactory situation.

2.
PLoS One ; 15(12): e0243692, 2020.
Article in English | MEDLINE | ID: covidwho-992700

ABSTRACT

OBJECTIVE: Rapid testing is paramount during a pandemic to prevent continued viral spread and excess morbidity and mortality. This study investigates whether testing strategies based on sample pooling can increase the speed and throughput of screening for SARS-CoV-2, especially in resource-limited settings. METHODS: In a mathematical modelling approach conducted in May 2020, six different testing strategies were simulated based on key input parameters such as infection rate, test characteristics, population size, and testing capacity. The situations in five countries were simulated, reflecting a broad variety of population sizes and testing capacities. The primary study outcome measurements were time and number of tests required, number of cases identified, and number of false positives. FINDINGS: The performance of all tested methods depends on the input parameters, i.e. the specific circumstances of a screening campaign. To screen one tenth of each country's population at an infection rate of 1%, realistic optimised testing strategies enable such a campaign to be completed in ca. 29 days in the US, 71 in the UK, 25 in Singapore, 17 in Italy, and 10 in Germany. This is ca. eight times faster compared to individual testing. When infection rates are lower, or when employing an optimal, yet more complex pooling method, the gains are more pronounced. Pool-based approaches also reduce the number of false positive diagnoses by a factor of up to 100. CONCLUSIONS: The results of this study provide a rationale for adoption of pool-based testing strategies to increase speed and throughput of testing for SARS-CoV-2, hence saving time and resources compared with individual testing.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Models, Theoretical , Clinical Laboratory Techniques , Humans , Mass Screening/methods
SELECTION OF CITATIONS
SEARCH DETAIL